It is given that P(X ≥ 2) = 0.25 for an exponentially distributed random variable X with E[X]=1λ, where E[X] denotes the expectation of X. What is the value of λ?

(ln denotes natural logarithm)

A.

ln 2

B.

ln 4

C.

ln 3

D.

ln 0.25

Solution:

We are given:

  • XExponential(λ)X \sim \text{Exponential}(\lambda)

  • P(X2)=0.25P(X \geq 2) = 0.25

  • E[X]=1λE[X] = \frac{1}{\lambda}

  • Find λ\lambda


Step 1: Use the exponential distribution formula

For an exponential random variable:

P(Xx)=eλxP(X \geq x) = e^{-\lambda x}

Given:

P(X2)=0.25e2λ=0.25P(X \geq 2) = 0.25 \Rightarrow e^{-2\lambda} = 0.25


Step 2: Solve for λ\lambda

Take the natural logarithm on both sides:

2λ=ln(0.25)λ=12ln(0.25)-2\lambda = \ln(0.25) \Rightarrow \lambda = -\frac{1}{2} \ln(0.25)

Now, recall:

ln(0.25)=ln(14)=ln(4)λ=12(ln(4))=12ln(4)


✅ Final Answer: A

Because:

ln4=ln(22)=2ln(2)12ln(4)=ln(2)